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The theory of random matrices has far-reaching applications in many different areas of mathematics and physics. In this note, we briefly
describe the state of the theory and two of the perhaps most surprising appearances of random matrices, namely in the theory of quantum
chaos and in the theory of prime numbers.

S ince the pioneering work of E. Wigner in the 1950s, it has
emerged that the statistical properties of many quantum

systems can be modeled by random matrices. Wigner’s original
work was concerned with neutron excitation spectra of heavy
nuclei. These are many-particle systems whose interaction, ac-
cording to Wigner, is so complex that the Hamiltonian repre-
senting the system should behave like a large random matrix. It
was discovered 30 years later that even simple one-particle
quantum systems exhibit random matrix statistics, if the classical
limit of the system is chaotic. An example of such a system is the
electron in the heart-shaped region of Fig. 1, studied in ref. 1. In
Fig. 2, the distribution of energy level spacings for that system is
compared with that of the Gaussian Orthogonal Ensemble of
random matrices. In this situation, nearby levels seem to repel
each other, because the probability of finding small spacings is
small. It is, in fact, believed that all generic quantum systems
follow random matrix statistics of a suitably chosen ensemble, if
the underlying classical dynamics is chaotic. The choice of
ensemble depends on the physical symmetries of the system, for
instance, time-reversal symmetry (2). If, in contrast, the under-
lying dynamics is regular, i.e., nonchaotic, the energy levels will
not follow random matrix statistics but rather will behave like
independent random variables from a Poisson process (3). An
example of such a regular system is an electron confined to a
circular domain. Its level spacing distribution is shown in Fig. 3,
vs. the exponential distribution of a Poisson process.

Random matrices, in fact, are not only used to describe
statistical properties of physical systems (e.g., in quantum chaos,
disordered mesoscopic systems, and polynuclear growth models;
see ref. 4 for a recent survey), but they also appear in such distant
fields as number theory (5) and combinatorics (6). The com-
bined efforts of mathematicians and physicists have recently led
to a rigorous understanding of universality for a number of
different symmetry classes, and we can hope for an even more
complete understanding in the near future. Moreover, the recent
discovery of new applications of random matrix theory is a strong
indication that the eigenvalues of random matrices provide a
fundamental model for sequences of dependent random num-
bers with a wide range of possible applications.

Universality in Random Matrix Theory. We now briefly describe the
flavor of some of the results, which have been obtained in the
theory of random matrices during the past few years. We refer
the reader to ref. 7 for a history of the field up to the beginning
of the 1990s. All results we consider here seek to establish the
universality conjecture, which—roughly speaking—claims that
local statistics (i.e., properly rescaled correlation functions) of
the eigenvalues of random matrices converge as the size of the
matrices becomes large, and that the limit is independent of the
probability measure on the matrix spaces. It is clear that this

conjecture is too general to hold true. Therefore, it is more
appropriate to reformulate the goal to determine different
universality classes, i.e., to identify classes of probability mea-
sures that asymptotically possess the same statistical behavior.
As a rule of thumb, these classes may depend on the symmetry
class of the matrices. Also, the statistics in the bulk of the
spectrum differ from the statistics observed near the edge of the
spectrum (or more generally near points where the density of the
eigenvalues vanishes). During the past 5 years, there have been
three different types of matrix ensembles for which universality
was established rigorously. The first type is closest to those
studied by Wigner: the probability distributions on the entries of
the symmetric (respectively hermitean) matrices are indepen-
dent and satisfy some mild assumptions on their moments (8).
The second type concerns probability measures on matrix spaces,
which are invariant under certain classes of similarity transfor-
mations (see refs. 9–11). The third type concerns classical
compact Lie groups (see ref. 12 and refs. therein).

Quantum Chaos. The theory of quantum chaos is concerned with
statistical properties of quantum systems that possess a classical
limit. As mentioned earlier, one expects, for example, that the
statistics of energy levels are typically described either by
random matrix theory, when the classical limit is chaotic, or by
a Poisson process, in the case when the classical dynamics is
regular, i.e., completely integrable. The central tool in under-
standing this connection is Gutzwiller’s trace formula (13),
which gives a semiclassical relation between the energy eigen-
values of the quantum system and the actions of the periodic
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Fig. 1. Probability density of the 1,816th and 1,817th odd eigenstate of a
quantum particle trapped in a chaotic heart-shaped region with Dirichlet
boundary conditions. The probability of finding the particle at a given point
is low in blue regions and high in red regions.
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orbits of the classical counterpart. The hope is that the random
matrix behavior of the eigenvalues can be understood in terms
of the underlying classical chaotic or regular dynamics (14).
There has been some recent progress in the case of simple
regular systems, such as an electron confined to a rectangular
box with generic ratio of sides. Here the question of spectral
statistics reduces to very subtle lattice-point counting problems,
which can be solved for special cases (see ref. 15 and refs.
therein).

An additional aspect of quantum chaos is related to the
statistical properties of the eigenstates. According to a theorem
of Shnirelman, Zelditch, and Colin de Verdiere (16–18), almost
all eigenfunctions of a quantum system whose classical dynamics
is ergodic should become equidistributed in the classical limit on
the available classical phase space. The eigenstate pictured in
Fig. 1 Left is an example of such an ‘‘equidistributed’’ eigen-
function; that in Fig. 1 Right obviously is not. It is, in fact,
localized around a classical unstable periodic orbit bouncing
back and forth between opposite billiard walls. Such eigenstates
have been termed scars (19), and their appearance indicates that
not all eigenstates are in accordance with the random matrix
prediction. Generally, it is not understood whether scars can
appear at arbitrarily high energy values, or whether all (and not
just almost all) highly excited eigenstates will eventually become
equidistributed (see ref. 1 and refs. therein). So far, only a few
systems are known where localized states can be ruled out (20).
This phenomenon is called quantum unique ergodicity.

Prime Numbers. One of the biggest unsolved problems in math-
ematics is the Riemann Hypothesis, which asserts that the

nontrivial zeros of the Riemann zeta function are lying on a
straight line in the complex plane. The position of the zeros is of
crucial importance in numerous problems in analytic number
theory; Riemann himself investigated the zeros in connection
with the number of primes below some large X.

Polya and Hilbert suggested that the Riemann Hypothesis
could be solved by finding a linear self-adjoint operator whose
eigenvalues are given by the Riemann zeros. This idea received
a great boost when it was discovered that the Riemann zeros
have the same statistical properties as eigenvalues of large
random matrices from the Gaussian Unitary Ensemble (21, 22).
This ensemble happens also to be responsible for the statistics of
chaotic quantum systems without time-reversal symmetry, which
led to speculations that the Polya–Hilbert operator might be the
Hamiltonian of a quantum system with a chaotic classical limit.
Riemann’s explicit formula, which connects the zeros with prime
numbers, could then be viewed as a special case of Gutzwiller’s
trace formula, where the prime numbers are interpreted as
logarithms of classical actions of the (unknown) classical dy-
namics (23). Although the connection to random matrix theory
is still rather mysterious in the case of the Riemann zeta function,
there have been recent exciting developments in the case of zeta
functions of curves over finite fields, where the relation with the
spectral measures of the classical groups is now well established
(5, 12).

We are very grateful to Arnd Bäcker for producing Figs. 1–3. More such
beautiful illustrations of quantum chaotic wave functions may be found
in ref. 1 and in his Ph.D. thesis (24).
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Fig. 2. Level spacing distribution for the energy spectrum of a quantum
particle in the chaotic heart-shaped region of Fig. 1 vs. the level spacing
distribution for Gaussian Unitary Ensemble, Gaussian Orthogonal Ensemble,
and Poisson, respectively.

Fig. 3. Level spacing distribution for the energy spectrum of a quantum
particle in a circular region vs. the level spacing distribution for Gaussian
Unitary Ensemble, Gaussian Orthogonal Ensemble, and Poisson, respectively.
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